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Abstract

We explore a game where agents choose a positive real number.
This can be thought as a quantity of extracted water. Due to this ex-
traction, the agents, which are embedded in a weighted and directed
network, exert negative externalities on their immediate successors.
This can be thought as water flow reduction for downstream neigh-
bors; the higher the weight of the link, the higher the reduction. We
characterize the Nash equilibrium and the social optimum profiles of
this game as a function of the structure of the network. Then, we
investigate policy measures that could improve welfare in this game
either by imposing quotas, equal to equilibrium actions, or taxes, lo-
cated around the spectral radius of the network.
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1 Introduction

The present paper engages the classic question of restoring optimality in a
strategic game played on a directed network, where players’ actions are strate-
gic substitutes to their neighbors’ actions. This class of games, pioneered
among others by Ballester et al. (2006), encompasses various well-known
games including the voluntary contribution of local public goods (Bramoullé
and Kranton, 2007; Bloch and Zenginobuz, 2007; Corbo et al., 2007). In
such games, the relation between geographic (or social) structure and pure
strategy Nash equilibrium is now well understood (see, e.g., Bramoullé et al.,
2013; Rébillé and Richefort, 2014). This paper contributes to this literature
by providing new knowledge of how geographic (or social) structure, social
optimum and optimal policies are mutually related.

Here we consider a simultaneous-move game in which higher levels of ac-
tion by neighbors lower an individual’s payoff, in other words, we focus on
directed network games of strategic substitutes and negative externalities.
Typical application includes the extraction of water by a set of agents located
on a river basin. Due to this extraction, the agents, which are embedded in a
(weighted and directed) network of hydrological influences, exert local nega-
tive externalities by reducing water flow for their downstream neighbors (see,
e.g., Ambec and Sprumont, 2002; Houba, 2008; Khmelnitskaya, 2010).1 An-
other application is the production of a consumption good by a set of agents
located on a common area (e.g., an irrigation area). Due to this production,
the agents, which are embedded in a network of geographic proximities, exert
local negative externalities by polluting their immediate neighbors (see, e.g.,
Janmaat, 2005; Ni and Wang, 2007). In both cases, the higher the weight of
the link, the more the negative externality.

The main result is to establish the connection between efficiency-restoring
policies and players’ position in the network. To obtain this outcome, we first
find sufficient conditions for the existence of a unique and interior Nash equi-
librium.2 We then find sufficient conditions for the existence of a unique and
interior social optimum. Our proofs use standard optimization techniques

1In water resource economics, cooperative game theory has often been employed to
analyze the problem of water resource allocation (Parrachino et al., 2006; Madani, 2010).
In this literature, water is seen as a private good which can be traded and substituted
with money (Ambec and Sprumont, 2002). Here, we investigate the problem of water
allocation from a non-cooperative point of view because in many cases, participants may
be reluctant to accept cooperative solutions requiring monetary transfers not based on
market prices (Dinar et al., 1992).

2These results are in line with those obtained by Kaykobad (1985) on the existence of a
positive steady state for a linear system of delay equations corresponding to the dynamics
of n competing species.
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as well as tools from the Perron-Frobenius theory of nonnegative matrices.
Next, using modified versions of the Bonacich centrality measure, we define
the individual power and the social value of a player in the network. With
these definitions in hands, we show that

(i) players with a more “ powerful ” location in the network can exert a
higher action;

(ii) players with a more “ useful ” location in the network should exert a
higher action;

(iii) to restore efficiency, a lower quota and a higher tax rate should be
imposed to players whose locations have a lower social value in the
network.

The paper is built on the assumption of piece-wise linear best responses.
In other words, a player’s payoff function is separable into the linear benefit
of action and the convex cost of action. The use of such a cost function
is conventional in the economic theory of the commons. This reflects the
idea that the resource has a scarcity value (Gordon, 1954; Smith, 1968).3

Moreover, the use of a linear benefit function is standard in the economic
theory of negative externalities. Individual preferences are therefore quasi-
linear and explicit solutions on how to share and reduce the cost due to the
external effects can be obtained (Baumol and Oates, 1988).

The main motivation of the model is to understand the extent to which
geographic or social structures should be taken into account by policy makers
in order to regulate wasteful behaviors towards common-pool resources. The
role of geographic or social structure on the welfare loss caused by selfish use
of a common good has been found by Johari and Tsitsiklis (2004), who study
a network congestion game and show that the welfare of the equilibrium can
be equal to 66% of the optimum social welfare, and by İlkiliç (2010), who
studies a water extraction game in bipartite networks and show that, under
some structural conditions, water sources could be exploited above the effi-
cient levels. Interestingly, the need for non-uniform incentives to restore op-
timality when people are organized into geographic or social “ relationships ”
has been first established by Holmstrom (1982) when relationships induce
positive externalities (the “ public good ” case), and by Segerson (1988) when
relationships induce negative externalities (the “ pollution ” case). In a way,
the present paper extends the “ pollution ” case by taking explicitely into
account the architecture of the relationships.

3See Dinar et al. (1997) for a discussion on the use of convex cost functions in water
resource economics.
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2 Model

There are n players and the set of players is N = {1, . . . , n}. Each player
l ∈ N chooses simultaneously an action al ≥ 0. E.g., the players could be
“ agents ” (municipalities, farmers, individuals, ...) extracting water and al
could be the strategy of agent l’s in the quantity extracted. We assume that
player l’s marginal benefit of action is pl > 0. Let a = (a1, . . . , an) denote an
action profile of all players.

Players are arranged in a network, which we represent as a weighted di-
rected graph which consists of a set of nodes (the players), a set of arcs (the
unidirectional externalities between players) and a mapping from the set of
arcs to a set of positive weights (the intensities of the externalities). We will
use kl to denote an arc directed from node k to node l. If kl is an arc, then
we say that node l is a downstream neighbor (i.e., an immediate successor) of
node k, or that node k is an upstream neighbor (i.e., an immediate predeces-
sor) of node l. A directed path in the graph is a sequence of distinct nodes
connected by arcs corresponding to the order of the nodes in the sequence.
The length of a directed path is its number of arcs. The weight of a directed
path is the product of the weights of its arcs. To continue our example,
the network could reflect the hydrologic distribution of the agents on a river
basin. Two agents are neighbors only when they are hydrologically depen-
dent. In that case, the two agents are linked, the direction and the intensity
of the link being determined by the flowing nature of water.

The basic representation of the graph is given by its weighted n × n
adjacency matrix Ω = [ωkl] ∈ IRn×n

+ where ωkl > 0 if kl is an arc and ωkl = 0
otherwise (by convention ωkk = 0).

We suppose that players are “ polluted ” by their upstream neighbors’ ac-
tions and hence that network externalities are negative. Let ei denote player
i’s environmental burden, defined as the sum of player i’s action level with
the action levels of her upstream neighbors multiplied by the correspond-
ing weights. Players incur the cost of their environmental burden according
to a twice differentiable strictly convex cost function ql(el) defined on IR+

with q′l > 0 and q′′l > 0 on (0,∞) for all l. Following our assumptions
stated above, the resulting environmental burden is determined according to
el = al +

∑

k:k 6=l ωklak. E.g., ql(el) could be the value, in monetary units, to
agent l of water extractions a of all agents.

The payoff function of player l, defined for all action profile a ≥ 0, is
given by

Ul (a) = plal − ql

(

al +
∑

k:k 6=l

ωklak

)

,
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and we note G(Ω,p,q) the simultaneous-move game with payoffs Ul : IR
n
+ →

IR and strategy space al ≥ 0 for all l, where p is the vector of marginal
benefits and q the vector of cost functions. Since ∂Ul/∂ak ≤ 0 for all k 6= l,
this is a game of negative externalities, and since ∂2Ul/∂ak∂al ≤ 0 for all
k 6= l, this is a game of strategic substitutes. We focus on Nash equilibria in
pure strategies.4 For the rest of the paper, we require:

Assumption A0. q′l(0) < pl < q′l(∞) for all l ∈ N .

We call this assumption the boundary conditions. If q′l(0) ≥ pl, then
player l would not exert any action and could be ignored, and if q′l(∞) ≤ pl,
then player l’s optimization problem has no solution.5

3 Equilibrium Profile

Given z̄l =
∑

k:k 6=l ωklāk, each player l maximizes her payoff function with re-
spect to own action constrained to be nonnegative. The first order conditions
for a Nash equilibrium are

{

if al > 0, then pl = q′l (al + z̄l) ;
if al = 0, then pl ≤ q′l (al + z̄l) .

It follows that an action profile â ∈ IRn
+ is a Nash equilibrium of game G if

and only if
∀l ∈ N, âl = max {0, a∗l − ẑl} ,

where a∗l = (q′l)
−1(pl) is positive and finite (thanks to the boundary condi-

tions), and ẑl =
∑

k:k 6=l ωklâk ≥ 0. From now on, we will refer to a∗l as player

l’s autarky equilibrium action and for sake of simplicity, let a∗ = (q′)−1(p) =
((q′l)

−1(pl))l.
In network games, equilibrium analysis has traditionally been the pri-

mary research subject and great efforts have been made to increase our un-
derstanding of equilibrium behaviors and outcomes.6 In network games of

4Note that the action space is the real line and the payoffs are strictly concave, so every
mixed strategy is dominated, in terms of expected payoffs, by its average pure strategy.

5Under A0, we have pl − q′l(0) > 0 and pl − q′l(∞) < 0 for all l. Moreover, pl is
a constant and ql is strictly convex for all l. Thus, the existence of a Nash equilibrium
profile is guaranteed by A0 and is a direct application of Theorem 1 in Rébillé and Richefort
(2014).

6In particular, equilibrium existence, uniqueness and characterization in terms of play-
ers’ network centrality has been well studied by several authors (Ballester et al., 2006;
Bramoullé and Kranton, 2007; Bloch and Zenginobuz, 2007; Corbo et al., 2007; Ballester
and Calvó-Armengol, 2010; Le Breton and Weber, 2011; Bramoullé et al., 2013; Rébillé
and Richefort, 2014).
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strategic substitutes, a sufficient uniqueness condition, that derives from con-
traction of the best response functions, states that ρ(Ω), the spectral radius
of the network, should be sufficiently low.7 This result has been recently
improved: G(Ω,p,q) admits a unique Nash equilibrium whenever I + Ω is
a P -matrix.8 However, these conditions do not allow to distinguish between
corner, partially-corner and interior equilibria. We contribute to this litera-
ture by focusing on interior Nash equilibria. We require:

Assumption A1.
(

I−ΩT
)

a∗ >> 0.

This assumption guarantees that for each player, the difference between
her own autarky equilibrium action and the sum of her upstream neighbors’
autarky equilibrium actions is always positive.9 We obtain the following
result.

Proposition 1. Let G(Ω,p,q) be a network game. Under A0 and A1, the
equilibrium profile exists, is unique and is interior.

This result establishes the sharpest sufficient condition for the existence
(guaranteed by A0) of a unique (guaranteed by A1 since A1 ⇒ ρ(Ω) < 1 ⇒
I+Ω is a P -matrix) and interior Nash equilibrium in directed network games
of strategic substitutes and negative externalities.

We now look for a closed-form solution to the equilibrium problem. For
this purpose, we introduce a modified version of the Bonacich centrality
measure. For a weighted adjacency matrix Ω ∈ IRn×n

+ and for a vector of
weights v ∈ IRn

+ assigned to the nodes, the (weighted) Bonacich centrality
measure is given by

c (α, β,Ω,v) = α (I− βΩ)−1
Ωv,

where α, β ∈ IR are two scalars (Bonacich, 1987). If |β| is sufficiently low,
we have the following power expansion:

c (α, β,Ω,v) = α

∞
∑

k=0

βkΩk+1v,

7In undirected networks, the spectral radius is a standard measure of the density of
the network. See, e.g., Cvetkovic and Rowlinson (1990).

8See Rébillé and Richefort (2014) for the proof and for the geometric/economic inter-
pretation of this result.

9Assumption A1 can be related to Assumption (2.4) in Kaykobad (1985)’s paper on
the existence of a positive solution for a linear nonhomogeneous system of equations with
positive coefficients.
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so the Bonacich centrality measure counts the total weight of all directed
paths ending at each node in the network. Moreover, when β is negative,
even length directed path are weighted negatively and odd length directed
path are weighted positively, hence c(1, β,Ω,1) measures the (bargaining)
power of a node (Bonacich, 1987, p. 1176). We adapt this definition of power
to our framework.

Definition 1. Let G(Ω,p,q) be a network game. If I+ΩT is invertible, the
vector

b−
alt (Ω, a∗) = a∗ − c

(

1,−1,ΩT, a∗
)

=
(

I+ΩT
)−1

a∗

is called the individual power measure.

The individual power of a player in the network is a sum of her au-
tarky equilibrium action with the total weight of all directed paths that end
at her, where odd length directed paths are weighted negatively and even
length directed paths are weighted positively, and where a directed path
that starts at player k is weighted by a∗k, the autarky equilibrium action of
the corresponding player. Hence, having many upstream neighbors reduces
individual power, but if one player’s upstream neighbors themselves have
many upstream neighbors, individual power is increased, and so on.

Proposition 2. Let G(Ω,p,q) be a network game. Under A0 and A1, the
equilibrium profile is given by

â = b−
alt (Ω, a∗) .

When A0 and A1 are met, the unique Nash equilibrium is interior. In
this case, players that have a higher individual power in the network have
more powerful locations and consequently, they can exert a higher action.10

Example 1 (Quadratic costs and homogeneous benefits). Let G(Ω,p,q) be a
network game. Assume Ul(al, el) = pal −

γl
2
e2l for all l where p, γl > 0 (then

A0 is met and a∗l =
p

γl
> 0). Thus, A1 becomes

(

I−ΩT
) 1

γ
>> 0

where ( 1
γ
)l =

1
γl

for all l. When this condition is satisfied, we obtain

â = p b−
alt

(

Ω,
1

γ

)

.

10In other words, the equilibrium action of a player decreases with odd length directed
paths and increases with even length directed paths that end at her in the network. If
there is a directed path of odd length (resp. even length) from player k to player l,
player l’s action is a strategic substitute (resp. strategic complement) of player k’s action.
Otherwise, their actions are independent.
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4 Efficient Profile

For the analysis of the efficient action profile, we adopt a standard utilitarian
approach.11 Let SW be the social welfare function defined for all a ≥ 0 by

SW (a) =
∑

l

[

plal − ql

(

al +
∑

k:k 6=l

ωklak

)]

.

Given Ω, p and q, an action profile is said to be efficient, or socially optimal,
if it maximizes the social welfare function. The first order conditions for an
efficient action profile are























if al > 0, then pl − q′l

(

al +
∑

k:k 6=l

ωklak

)

=
∑

j:j 6=l

ωljq
′
j

(

aj +
∑

i:i 6=j

ωijai

)

;

if al = 0, then pl − q′l

(

al +
∑

k:k 6=l

ωklak

)

≤
∑

j:j 6=l

ωljq
′
j

(

aj +
∑

i:i 6=j

ωijai

)

.

Hence, an efficient action profile ã ∈ IRn
+ satisfies, for all l,

ãl > 0 ⇐⇒ pl − q′l (z̃l) >
∑

j:j 6=l

ωljq
′
j (ãj + z̃j).

where z̃l =
∑

k:k 6=l ωklãk and z̃j =
∑

i:i 6=j,l ωij ãi.
In such games, welfare analysis has not been investigated so much, al-

though this subject is crucial to understanding the upper bounds on the
network’s performance.12 In the present paper, we investigate the existence,
the uniqueness, the interiority and the characterization of the efficient ac-
tion profile for general network structures (acyclic or not, directed or not,
weighted or not). We require:

Assumption A2. (I−Ω)p − q′
(

ΩTa∗
)

>> 0, where pl = q′l(a
∗
l ) for all

l ∈ N .

11This is for ease of exposition. This also reflects the interest of the social planner for the
various players without (geographic, social, ...) discrimination. However, one can easily
check that all our results extend to weighted social welfare functions.

12A natural question already considered in the literature has been to identify the Nash
equilibrium maximizing social welfare. In particular, positive and negative effects of re-
moving a player (Ballester et al., 2006), adding a new link (Bramoullé and Kranton, 2007;
Bramoullé et al., 2013) or changing the intensity of a link (Bloch and Zenginobuz, 2007)
have been analyzed. Another attempt at analyzing social welfare can be found in Rébillé
and Richefort (2012) for acyclic networks.
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This assumption guarantees that for each player, the difference between
her own marginal benefit and the sum of her downstream neighbors’ marginal
benefits is always greater than the marginal cost of the maximal negative
impact (given by the autarky equilibrium action) caused by her upstream
neighbors. We obtain the following result.

Proposition 3. Let G(Ω,p,q) be a network game.

(i) Under A0 and A2, the efficient profile exists, is unique and is interior.

(ii) Moreover, A2 ⇒ A1 ⇒ I+Ω is invertible ⇒ ã ∈ IRn
+ is unique.

This result establishes the sharpest sufficient condition for the existence
(guaranteed by A0) of a unique (interior if A2 is met; corner or partially-
corner otherwise) social optimum in directed network games of strategic sub-
stitutes and negative externalities. We now look for a closed-form solution
to the efficiency problem. For this purpose, we introduce another modified
version of the weighted Bonacich centrality measure.

Definition 2. Let G(Ω,p,q) be a network game. If I+Ω is invertible, the
vector

b+
alt (Ω,p) = p− c (1,−1,Ω,p) = (I+Ω)−1

p

is called the social value measure.

The social value of a player in the network is a sum of her marginal benefit
of action with the total weight of all directed paths that start at her, where
odd length directed paths are weighted negatively and even length directed
paths are weighted positively, and where a directed path that ends at player j
is weighted by pj, the marginal benefit of action of the corresponding player.
Hence, having many downstream neighbors reduces social value, but if one
player’s downstream neighbors themselves have many downstream neighbors,
social value is increased, and so on.

From now on, we will refer to ã∗l = (q′l)
−1((b+

alt(Ω,p))l) as player l’s
autarky efficient action and for sake of simplicity, let ã∗ = (q′)−1(b+

alt(Ω,p)).

Proposition 4. Let G(Ω,p,q) be a network game. Under A0 and A2, the
efficient profile is given by

ã = b−
alt (Ω, ã∗) .

When A0 and A2 are met, the unique social optimum is interior and is
equal to a combination of the individual power and the social value measures.
This combination may reflect the social power of the players. Hence, players
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that have a higher social power in the network have more socially powerful
locations and consequently, they should exert a higher action.13 Furthermore,
the higher the social value of a player, the higher her autarky efficient action
and therefore, the higher her efficient action. Thus, players that have a higher
social value have more useful locations and consequently, they should exert
a higher action.

Example 2 (Quadratic costs and homogeneous benefits continued). Since
Ul(al, el) = pal −

γl
2
e2l for all l, A2 becomes

(

I−Ω−ΩT
) 1

γ
>> 0.

When this condition is met, we obtain

ã = p b−
alt

(

Ω,b+
alt

(

Ω,
1

γ

))

.

5 Optimality-Restoring Policies

We are now interested in deriving policies that restore optimality in games
with local substitutabilities and negative externalities. This purpose is im-
portant because in such games, the equilibrium action profile is always inef-
ficient and therefore, there are losses in social welfare.

Firstly, we focus on a situation where players’ actions are constrained by
a quota. The payoff of a player l is then given by

Ul (a) = plal − ql

(

al +
∑

k:k 6=l

ωklak

)

,

with al ≤ κl for all l, where κl is player l’s action quota.

Proposition 5. Let G(Ω,p,q) be a network game. Under A0 and A2, the
optimal vector of quotas is given by

κ̃ = ã = b+
alt (Ω, ã∗) .

As it turns out, the optimal vector of quotas is actually the efficient
action profile. The interpretation is straightforward. Players that have a

13In other words, the efficient action of a player increases with even length directed paths
and decreases with odd length directed paths that end and start at her in the network.
If there is a directed path of odd length (resp. even length) from player k to player l,
their actions are negatively (resp. positively) correlated. Otherwise, their actions are
independent.
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higher social power should exert a higher action and therefore, they should
get a higher quota. In other words, a lower quota should be imposed to
players whose locations have a lower social value.

Secondly, we provide a tax mechanism which achieves the efficient action
profile at game G(Ω,p,q). The mechanism penalizes players for their devia-
tions from the efficient actions and hence, players prefer to exert the efficient
action level. The payoff of a player l is then given by

Ul (a) = pl (1− τl) al − ql

(

al +
∑

k:k 6=l

ωklak

)

,

where τl ∈ [0, 1) is player l’s tax rate on benefits.

Proposition 6. Let G(Ω,p,q) be a network game. Under A0 and A2, the
optimal tax rates satisfy the following assertions.

(i) ∀l ∈ N ,

τ̃l = 1−

(

b+
alt (Ω,p)

)

l

pl
, with τ̃l ∈ [0, 1).

(ii) ∀l ∈ N ,
τ̃l > 0 ⇐⇒ l has a downstream neighbor.

The higher the social value of a player in the network, the lower her op-
timal tax rate on benefits. Hence, the optimal tax rates depends on players’
position in the network: they reflect both the marginal damages and the
marginal benefits players produce on other players at the efficient profile.14

Moreover, the optimal tax rates are always between zero (included) and one
(excluded). In particular, τ̃l = 0 if and only if player l has no downstream
neighbors in the network.15 The following result provides a deeper under-
standing of how network structure can shape the optimal tax rates.

Proposition 7. Let G(Ω,p,q) be a network game. Under A0 and A2, the
optimal tax rates satisfy the following inequality:

τ̃min ≤
ρ (Ω)

1 + ρ (Ω)
≤ τ̃max,

where τ̃min = minl{τ̃l} and τ̃max = maxl{τ̃l}.

This result states that the optimal tax rates are centered on an increasing

14More precisely, the optimal tax rate imposed to a player is positively related with the
total weight of odd length directed paths and negatively related with the total weight of
even length directed paths that start at her, where a directed path that end at player j is
weighted by pj .

15The proof relies on the fact that b+

alt
(Ω,p) is always positive whenever A2 is satisfied.
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function of ρ(Ω). This implies, for instance, that if the network is acyclic16,
there exists l such that τ̃l = 0. Following Proposition 6, we know that these
tax rates down to zero concern players who have no downstream neighbors in
the network.17 If ρ(Ω) > 0, there exists l such that τ̃l > 0. Hence, whenever
the optimal tax rate is uniform, it must be related to the spectral radius of
the network.

Proposition 8. Let G(Ω,p,q) be a network game. Under A0 and A2, the
following results hold.

(i) If the optimal tax rate is uniform, then p is an eigenvector of Ω.

(ii) Conversely, if p is an eigenvector of Ω and tp its associated eigenvalue,
then tp ≥ 0 and τ = tp

1+tp
∈ [0, 1) is the uniform optimal tax rate.

(iii) Moreover, the optimal uniform tax rate is given by

τ̃ =
ρ (Ω)

1 + ρ (Ω)
.

This result shows that the optimal tax rate is uniform if and only if
the vector of marginal benefits is an eigenvector of the network. In general,
however, this condition is hardly met. Then, the optimal policy almost surely
implies a discrimination between players according to their position in the
network. But when p is an eigenvector of the network18, the optimal tax rate
is uniform and is equal to the increasing function of ρ(Ω) used in Proposition
7 to center the optimal tax rates.19

Example 3 (Quadratic costs and homogeneous benefits continued). Since
Ul(al, el) = pal −

γl
2
e2l for all l, we obtain

τ̃ = 1− b+
alt (Ω,1) ,

16In that case, ρ(Ω) = 0 (see Rébillé and Richefort, 2012).
17At least one such player always exists when the network is acyclic.
18Such a situation arises, for instance, when marginal benefits are uniform and players

have the same weighted out-degree.
19Interestingly, observe that

ρ (Ω)

1 + ρ (Ω)
= ρ

(

∞
∑

k=0

(−1)
k
Ω

k+1

)

= ρ (M) .

Thus, the optimal uniform tax rate is equal to the spectral radius of a matrix M =
c(1,−1,Ω, .) whose entry mkl counts the total weight of all directed paths in the network
starting at player k and ending at player l, where odd length directed paths are weighted
positively and even length directed paths are weighted negatively.
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whenever A2 is met. Suppose that players are arranged either along a “ river ”
or around a “ lake ” (see Figure 1 below). In both cases, let the same weight
δ ∈ (0, 1) be attached to each arc and assume that δ is sufficiently low to
satisfy A2.

1

2

3

n

δ

δ 1

2

n

3
δ

δ

δ

(a) (b)

Figure 1: Geographic/Hydrologic structures with n players

Let us compute the optimal tax rates for these two classic networks.
(a) The river. This case illustrates Propositions 6 and 7. Player n is

located at the tail end of the river, she has no downstream neighbors and
therefore, τ̃n = τ̃min = 0. All other optimal tax rates are positive, and since
players are heterogeneous in their position along the river network, these tax
rates are non-uniform. We obtain:

∀l ∈ N, τ̃l =
δ + (−δ)n−l+1

1 + δ
.

Moreover, τ̃max = τ̃n−1 = δ (< 1). Thus, τ̃l ∈ [0, δ] for all l.
(b) The lake. This case illustrates Proposition 8. We have Ωp = δp, so

p is an eigenvector of Ω and δ its associated eigenvalue. Since p >> 0, it
follows that ρ(Ω) = δ and therefore, the optimal tax rate is uniform (though
players have heterogeneous cost functions). We obtain:

∀l ∈ N, τ̃l =
δ

1 + δ
.

When n → ∞, the river can be considered as a lake: the term (−δ)n−l+1

tends to zero (since δ < 1) and the optimal tax rates of the river give the
uniform optimal tax rate of the lake.
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6 Extension

We show that our main insights can be used for establishing a necessary and
sufficient condition under which each player exerts a strictly higher level of
action than her efficient level. At the end of the appendix, we also discuss
how our policy results would be affected by relaxing the focus on interior
solutions.

Following Hardin (1960)’s terminology, the situation in which each player
exerts a strictly higher level of action than her efficient level is called a
Tragedy of the Commons, and we investigate the relation between such a
situation and network structure. According to Proposition 6, we have:

∀l ∈ N, τ̃l = 1−

(

b+
alt (Ω,p)

)

l

pl
, with τ̃l ∈ [0, 1).

Hence, b+
alt(Ω,p) = (1 − τ ) × p and ã = b−

alt(Ω, (q′)−1((1 − τ ) × p)). We
may now consider the difference vector d = â− ã. We have

d = b−
alt (Ω, a∗)− b−

alt (Ω, ã∗) = b−
alt (Ω,d∗)

where d∗ = a∗ − ã∗. By Proposition 6, we know that d∗ >> 0 whenever
τ̃ >> 0 (since (q′)−1 is increasing by A0 and τ ≥ 0). That is, a∗ >> ã∗

whenever each player has at least one downstream neighbor in the network,
in other words, if there are no “ sink ” players.

Property 1. Let G(Ω,p,q) be a network game. Then a Tragedy of the
Commons occurs, i.e.,

â >> ã

if and only if the following linear system of inequalities

{ (

I+ΩT
)

d = d∗

d >> 0

admits a solution. In particular, if
(

I−ΩT
)

d∗ >> 0 holds.

Note that whenever a Tragedy of the Commons occurs, then necessarily
the network has no sink players. Indeed, if the system described in Property
1 admits a solution d >> 0, then d∗ >> 0, so τ >> 0, thus by Proposition
6 the network possesses no sink players.20

20The sufficient condition we propose here is an application of Assumption A1 in Propo-
sition 1. This condition is also related to Kaykobad (1985)’s existence result for a positive
solution of positive linear systems.
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7 Conclusion

This paper brings a social welfare analysis to directed network games of
strategic substitutes and negative externalities, and is the first to establish
the relation between geographic (or social) structure, social optimum and
optimal policies.

Precisely, we highlight the implications of the upstream-downstream rela-
tionships on outcomes of the game: we formulate the equilibrium, the social
optimum and the optimal policies profiles in terms of the directed paths that
end and start at each player in the network, where directed paths of even and
odd length have opposing signs in the closed-form expressions. These find-
ings are consistent with previous results in the literature on the commons,
in particular on the problem of efficient water resource allocation, whether
from cooperative point of view (see, e.g., Ambec and Sprumont, 2002) or
non-cooperative point of view (see, e.g., İlkiliç, 2010).

The cost function we consider allows us to investigate local negative exter-
nalities in games of strategic substitutes. A player’s cost function depends on
own action and the action of all her upstream neighbors. Our cost function is
convex and allows for asymmetric effects between upstream neighbors’ action
and own action. Thus, our model can be interpreted in terms of overuse of
a common good (e.g., water) or in terms of pollution externalities (see, e.g.,
Janmaat, 2005; Ni and Wang, 2007). In addition, benefits are linear in (and
only depends on) own action. This specification of preferences, although re-
strictive, helps us focus on the effects of network structure at equilibrium, at
efficiency and on optimal policies.

This work creates space for further research. The optimal tax plan de-
signed in this paper raises issues as to the how social welfare, as well as
property rights, should be defined in a social system. A further issue for
investigation is how to redistribute the revenue generated by optimal taxes.
Other extensions concern some refinements of the model that could be un-
dertaken. For instance, actions could be constrained, at the individual level
and/or at the system level. This should lead us to incorporate dynamics
and stock issues in the model. Finally, it would also be pertinent to test the
robustness of our policy results to more general specifications of preferences.
The case of additive separable utility functions could be a reasonable first
step towards this goal.
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Appendix

A. Proofs of the results

Proof of Proposition 1. Existence. See footnote 5.
Uniqueness. A Nash equilibrium â ∈ IRn

+ of game G(Ω,p,q) is solution
of the Linear Complementarity Problem







(

I+ΩT
)

â ≥ a∗

â ≥ 0

âT
[(

I+ΩT
)

â− a∗
]

= 0

(1)

Theorem 2 in Rébillé and Richefort (2014) entails that (1) admits a unique
solution whenever I+Ω is a P -matrix (see Fiedler and Pták, 1962). Let us
show that A1 implies that I+Ω is a P -matrix. We note λIR

min(Ω) the lowest
real eigenvalue of Ω and ΩI×J the submatrix of Ω with rows in I ⊆ N and
columns in J ⊆ N .

Under A1, Ω is a productive matrix (see Gale, 1960), so for all I ⊂
N , ΩI×I is also a productive matrix. Then, ρ(ΩI×I) < 1 for all I ⊆ N
(see Berman and Plemmons, 1994). Hence, λIR

min(ΩI×I) > −1 and therefore
λIR
min((I+Ω)I×I) > 0 for all I ⊆ N . So I+Ω is a P -matrix.
Interiority. Consider a unique Nash equilibrium â. By construction, for

every l it holds
âl = max

{

0, a∗l − âTΩ.l

}

≥ 0

and since Ω ≥ 0,
âl = max

{

0, a∗l − âTΩ.l

}

≤ a∗l .

Hence, 0 ≤ â ≤ a∗ and we have for every l,

âl = max
{

0, a∗l − âTΩ.l

}

≥ max
{

0, a∗l − a∗TΩ.l

}

> 0, by A1.

Thus, â is interior.

Proof of Proposition 2. Under A0 and A1, (1) becomes
{ (

I+ΩT
)

â = a∗

â >> 0

Since A1 ⇒ ρ(Ω) < 1 (Gale, 1960; Berman and Plemmons, 1994), −1 is not
an eigenvalue of Ω. Therefore I+Ω is invertible and I+ΩT is also invertible.
Hence,

â =
(

I+ΩT
)−1

a∗.
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Proof of Proposition 3. (i) Existence. We shall build a sufficiently large box
where the maximum is reached. Let a ≥ 0. Let us study the partial deriva-
tives of SW . We have, for all l,

∂ SW
∂ al

(a) = pl − q′l

(

al +
∑

k:k 6=l

ωklak

)

−
∑

j:j 6=l

ωljq
′
j

(

aj +
∑

i:i 6=j

ωijai

)

≤ pl − q′l

(

al +
∑

k:k 6=l

ωklak

)

, since qj is increasing

≤ pl − q′l (al) , since ql is convex.

So whenever, al > a∗l ,
∂ SW
∂ al

(a) < 0. Define a# ≥ 0 by

a#l =

{

al , if al ≤ a∗l ,
a∗l , otherwise.

By construction, a# ∈
∏n

l=1[0, a
∗
l ] and SW (a) ≤ SW (a#). So, being contin-

uous SW reaches its maximum on
∏n

l=1[0, a
∗
l ], hence on IRn

+.
Uniqueness. Let us prove that SW is strictly concave whenever I+Ω is

invertible. We may ignore the linear part, we shall show that the following
function c is strictly convex where

c (a) =
∑

l

ql

(

al +
∑

k:k 6=l

ωklak

)

, a ≥ 0 .

Let a′, a′′ ≥ 0 and θ ∈ (0, 1) with a′ 6= a′′. Since I +Ω is invertible, I +ΩT

is invertible too. Now, there exists some l0 such that
((

I+ΩT
)

a′
)

l0
6=
((

I+ΩT
)

a′′
)

l0

that is
a′l0 +

∑

k:k 6=l0

ωkl0a
′
k 6= a′′l0 +

∑

k:k 6=l0

ωkl0a
′′
k .

By strict convexity of ql0 and convexity of ql for l 6= l0 it comes

ql0

(

θ

(

a′l0 +
∑

k:k 6=l0

ωkl0a
′
k

)

+ (1− θ)

(

a′′l0 +
∑

k:k 6=l0

ωkl0a
′′
k

))

< θql0

(

a′l0 +
∑

k:k 6=l0

ωkl0a
′
k

)

+ (1− θ) ql0

(

a′′l0 +
∑

k:k 6=l0

ωkl0a
′′
k

)
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and

ql

(

θ

(

a′l +
∑

k:k 6=l

ωkla
′
k

)

+ (1− θ)

(

a′′l +
∑

k:k 6=l

ωkla
′′
k

))

≤ θql

(

a′l +
∑

k:k 6=l

ωkla
′
k

)

+ (1− θ) ql

(

a′′l +
∑

k:k 6=l

ωkla
′′
k

)

.

Summing these inequalities over l, we obtain

c (θa′ + (1− θ) a′′) < θc (a′) + (1− θ) c (a′′)

and this establishes strong convexity of c, thus strong concavity of SW .
Therefore SW ’s maximum is unique.

Interiority. Let us show that A2 implies that I + Ω is invertible. Since
pl = q′l(a

∗
l ) for all l, A2 may be written

(I−Ω)q′ (a∗)− q′
(

ΩTa∗
)

>> 0

thus
q′ (a∗)− q′

(

ΩTa∗
)

>> 0

and since q′l is invertible and increasing for all l, we have

a∗ −ΩTa∗ >> 0

that is, A1 holds. Hence, ρ(Ω) < 1 and therefore, I+Ω is invertible.
Now, we show that the efficient profile is interior whenever A2 is satisfied.

We know that ã ∈
∏n

l=1[0, a
∗
l ]. Under A2, we may prove a sharper statement.

Lemma. Under A2, the efficient profile satisfies
(

I+ΩT
)

ã ≤ a∗.

Proof. Let l ∈ {1, . . . , n}. If ãl > 0, the first order conditions give

q′l

(

ãl +
∑

k:k 6=l

ωklãk

)

= pl −
∑

j:j 6=l

ωljq
′
j

(

ãj +
∑

i:i 6=j

ωij ãi

)

≤ pl .

Since q′l is increasing, ãl +
∑

k:k 6=l ωklãk ≤ a∗l , that is ((I+ΩT)ã)l ≤ a∗l . If

ãl = 0, we have
((

I+ΩT
)

ã
)

l
=
(

ΩTã
)

l
≤
(

ΩTa∗
)

l
≤ a∗l because A2 entails

A1.

18



Let us prove now that necessarily ã >> 0. Assume on the contrary that
for some l, we have ãl = 0. We have,

∂ SW
∂ al

(ã) = pl − q′l

(

0 +
∑

k:k 6=l

ωklãk

)

−
∑

j:j 6=l

ωljq
′
j

(

ãj +
∑

i:i 6=j

ωij ãi

)

≥ pl − q′l

(

∑

k:k 6=l

ωklãk

)

−
∑

j:j 6=l

ωljq
′
j

(

a∗j
)

,

by the Lemma and since q′j is increasing for all j

= pl − q′l

(

∑

k:k 6=l

ωklãk

)

−
∑

j:j 6=l

ωljpj

≥ pl − q′l

(

∑

k:k 6=l

ωkla
∗
k

)

−
∑

j:j 6=l

ωljpj,

since ãj ≤ a∗j for all j, and q′l is increasing

= ((I−Ω)p)l − q′l
(

(ΩTa∗)l
)

> 0, by A2.

This is in contradiction with the lth first order condition of the efficient profile,
i.e., ∂ SW

∂ al
(ã) ≤ 0.

(ii) See (i).

Proof of Proposition 4. Since ãl > 0 for all l whenever A2 is met, at social
optimum we have the following first order conditions:

∀l ∈ N, pl − q′l

(

ãl +
∑

k:k 6=l

ωklãk

)

−
∑

j:j 6=l

ωljq
′
j

(

ãj +
∑

i:i 6=j

ωij ãi

)

= 0.

Let ej = q′j(ãj +
∑

i:i 6=j ωij ãi) for all j. Then, the first order conditions may
be written:

∀l ∈ N, pl = el +
∑

j:j 6=l

ωljej = ((I+Ω) e)l = (I+Ω)l. e.

In matrix notation,
p = (I+Ω) e.
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Under A2, I+Ω is invertible, so we obtain

e = (I+Ω)−1
p.

We have specified ej = q′j(ãj +
∑

i:i 6=j ωij ãi) for all j. Thus,

∀j ∈ N,
(

q′j
)−1

(ej) = ãj +
∑

i:i 6=j

ωij ãi =
(

I+ΩT
)

j.
ã.

Hence,
(q′)

−1
(e) =

(

I+ΩT
)

ã,

and therefore,

ã =
(

I+ΩT
)−1

(q′)
−1

(e) =
(

I+ΩT
)−1

(q′)
−1 (

(I+Ω)−1
p
)

.

Proof of Proposition 5. Under A0 and A2, ãl > 0 for all l, thus at social
optimum we have the following first order conditions:

∀l ∈ N, pl − q′l

(

ãl +
∑

k:k 6=l

ωklãk

)

−
∑

j:j 6=l

ωljq
′
j

(

ãj +
∑

i:i 6=j

ωij ãi

)

= 0.

Then, by strict convexity of the cost functions, pl− q′l(ãl+
∑

k:k 6=l ωklãk) ≥ 0.
Now, we show that the efficient profile ã is also the Nash equilibrium of

a game where each player is constrained to exert an action at most equal to
her efficient level. Given Ω and ã−l, a player l’s maximization program is:

max
al

plal − ql

(

al +
∑

k:k 6=l

ωklãk

)

s.t. al ∈ [0, ãl] .

By assumption, Ul(ã−l, al) = plal − ql(al +
∑

k:k 6=l ωklãk) is a strictly concave
payoff function and

U ′
l (ã−l, al) = pl − q′l

(

al +
∑

k:k 6=l

ωklãk

)

.

Then, for al = ãl, we have

U ′
l (ã) = pl − q′l

(

ãl +
∑

k:k 6=l

ωklãk

)

≥ 0

because ã is the efficient profile of game G (Ω,p,q). Since Ul is strictly
concave and U ′

l (ã) ≥ 0, al = ãl is player l’s best reply. By Proposition 4, we
obtain the result.
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Proof of Proposition 6. (i) Under A0 and A2, ãl > 0 for all l. Thus, at social
optimum we have the following first order conditions:

∀l ∈ N, pl − q′l

(

ãl +
∑

k:k 6=l

ωklãk

)

−
∑

j:j 6=l

ωljq
′
j

(

ãj +
∑

i:i 6=j

ωij ãi

)

= 0.

Let τl =
1
pl

∑

j:j 6=l ωljq
′
j(ãj +

∑

i:i 6=j ωij ãi) for all l. So τl ≥ 0 for all l. The
first order conditions may be written:

∀l ∈ N, pl (1− τl) = q′l

(

ãl +
∑

k:k 6=l

ωklãk

)

> 0,

thus τl < 1. Then, the efficient profile ã is also a Nash equilibrium of a game
where, for all l,

Ul (a) = pl (1− τl) al − ql

(

al +
∑

k:k 6=l

ωklak

)

.

Let ej = q′j(ãj +
∑

i:i 6=j ωij ãi) for all j. Then,

∀l ∈ N, τl =
1

pl

∑

j:j 6=l

ωljej =
1

pl
Ωl.e.

Since e = (I+Ω)−1
p (see the proof of Proposition 4), it follows that

∀l ∈ N, τl =
1

pl
Ωl. (I+Ω)−1

p =
1

pl

(

Ω (I+Ω)−1
p
)

l
.

Finally, we note that

Ω (I+Ω)−1 = I− (I+Ω)−1

so

∀l ∈ N, τl =
pl −

(

b+
alt (Ω,p)

)

l

pl

(ii) We have

τ̃ ≥ 0 ⇐⇒ p− b+
alt (Ω,p) ≥ 0 ⇐⇒ p− (I+Ω)−1

p ≥ 0.

Now, observe that

p− (I+Ω)−1
p =

(

I− (I+Ω)−1
)

p = Ω (I+Ω)−1
p = Ωb+

alt (Ω,p) ,
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so
∀l ∈ N, τ̃l > 0 ⇐⇒

(

Ωb+
alt (Ω,p)

)

l
> 0.

Let us show that b+
alt(Ω,p) >> 0 whenever A2 is met. We have

∀l ∈ N, τ̃l =
pl −

(

b+
alt (Ω,p)

)

l

pl
< 1 ⇐⇒ b+

alt (Ω,p) >> 0.

Now, observe that
b+
alt (Ω,p) = b−

alt

(

ΩT,p
)

.

By Proposition 2, we have

(I−Ω)p >> 0 ⇒ b−
alt

(

ΩT,p
)

>> 0,

and since q′l > 0 for all l, we obtain

(I−Ω)p− q′
(

ΩTa∗
)

>> 0 ⇒ (I−Ω)p >> 0,

that is,
A2 ⇒ b+

alt (Ω,p) >> 0.

Hence,

∀l ∈ N, τ̃l > 0 ⇐⇒
(

Ωb+
alt (Ω,p)

)

l
> 0 ⇐⇒ ∃j ∈ N / ωlj > 0.

Proof of Proposition 7. Let us write ∀l, bl = (b+
alt(Ω,p))l as a shorthand.

From Proposition 6, we have for all l that

0 ≤ τ̃min ≤
pl − bl
pl

≤ τ̃max < 1

or equivalently
(1− τ̃min)

−1 bl ≤ pl ≤ (1− τ̃max)
−1 bl.

Since I+Ω is nonnegative,

(1− τ̃min)
−1

p ≤ (I+Ω)p ≤ (1− τ̃max)
−1

p

or equivalently

(

1 +
τ̃min

1− τ̃min

)

p ≤ (I+Ω)p ≤

(

1 +
τ̃max

1− τ̃max

)

p

22



so
τ̃min

1− τ̃min

p ≤ Ωp ≤
τ̃max

1− τ̃max

p.

Then, by Theorem 2.1.11 p.28 in Berman and Plemmons (1994), since p >>
0 we have

τ̃min

1− τ̃min

≤ ρ (Ω) ≤
τ̃max

1− τ̃max

,

that is,

τ̃min ≤
ρ (Ω)

1 + ρ (Ω)
≤ τ̃max.

Proof of Proposition 8. Let us write ∀l, bl = (b+
alt(Ω,p))l as a shorthand.

(i) Assume the optimal tax rate is uniform, i.e., ∀l, τ̃l = τ̃ . Then,

τ̃ = pl−bl
pl

, ∀l

⇐⇒ (1− τ̃)−1
b = p

⇐⇒
(

1 + τ̃
1−τ̃

)

p = (I+Ω)p

⇐⇒ τ̃
1−τ̃

p = Ωp

(ii) If Ω = 0, then 0, the unique eigenvalue, is clearly an optimal uniform
tax rate. If Ω 6= 0, assume p is an eigenvector of Ω and let tp ∈ IC be its
associated eigenvalue. Since tpp = Ωp, Ω ≥ 0 and p >> 0, for some l,
tppl > 0, thus tp > 0. We have

(I+Ω)p = (1 + tp)p.

Thus,
p = (I+Ω)−1 (1 + tp)p = (1 + tp)b,

so for all l,

τ̃l = 1−
bl
pl

= 1−

1
1+tp

pl

pl
= 1−

1

1 + tp
=

tp
1 + tp

.

(iii) If p is an eigenvector of Ω, then by Corollary 2.1.12 p.28 in Berman
and Plemmons (1994), p corresponds to ρ(Ω) since p >> 0. So,

tp = ρ (Ω) ⇐⇒ τ̃ =
ρ (Ω)

1 + ρ (Ω)
.
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B. Corner solutions

Consider a unique equilibrium where some players are inactive. This may
be the case when A1 does not hold but I + Ω is a P -matrix. Let C = {i :
âi > 0} and C its complement. We note ΩC×C the adjacency matrix of the
subnetwork obtained by deleting all the inactive players at equilibrium. The
subvector âC consisting of all the active players in the original game is also a
Nash equilibrium for the subgame obtained. Moreover, there are no inactive
players in this subgame, hence âC is equal to the individual power measure
of the subnetwork obtained after deleting the inactive players, provided that
(I+Ω)C×C is invertible (guaranteed if I+Ω is a P -matrix).

Next, consider a unique social optimum where some players are inactive.
This may be the case when A2 does not hold but I + Ω is invertible. Let
D = {i : ãi > 0} and D its complement. The first order conditions of social
welfare maximization for the active players are

∀l ∈ D, pl − q′l

(

ãl +
∑

k:k 6=l,k∈D

ωklãk

)

−
∑

j:j 6=l,j∈D

ωljq
′
j

(

ãj +
∑

i:i 6=j,i∈D

ωij ãi

)

−
∑

g:g 6=l,g∈D

ωlgq
′
g

(

0 +
∑

h:h 6=g,h∈D

ωhgãh

)

= 0.

We note ΩD×D the submatrix obtained by deleting all the inactive players
at efficiency and ΩD×D the (possibly rectangular) submatrix of Ω consisting
of rows with all the active players and columns with all the inactive players.
Assuming that (I+Ω)D×D is invertible (guaranteed if I+Ω is a P -matrix),
the subvector ãD consisting of all the active players at efficiency is “ almost
equal ” to the social power measure of the subnetwork obtained after deleting
the inactive players.

Property 2. Let G(Ω,p,q) be a network game. Under A0 and if I+Ω is a
P -matrix, the equilibrium profile exists, is unique and is given by

{

âC = 0

âC = b−
alt

(

ΩC×C , (q
′)−1 (pC)

)

.

Moreover, the efficient profile exists, is unique and is a fixed point, i.e.,
{

ãD = 0

ãD = b−
alt

(

ΩD×D, (q
′)−1

(

b+
alt (ΩD×D,φ (ãD))

))

where φ(ãD) = pD −ΩD×D q′(ΩD×D
T ãD).

Note that ãD may be obtained by solving the fixed point equation. There-
fore, our policy results might be extended to corner (or partially-corner)
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equilibria and social optima. This is, however, a non-trivial issue.
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